读书成神豪

从前有只坏猪

首页 >> 读书成神豪 >> 读书成神豪最新章节(目录)
大家在看都市之最强狂兵 我是导演,我不比烂 玩家凶猛 重生大时代之1993 戏假成真:演瘾君子这么像?查他 我的极品女老师 我有九千万亿舔狗金 重生60年代,开局就上山下乡 倚天之崆峒门徒 奶爸:天降萌娃,美女明星找上门 
读书成神豪 从前有只坏猪 - 读书成神豪全文阅读 - 读书成神豪txt下载 - 读书成神豪最新章节 - 好看的都市小说

第252章 浅度学习

上一章书 页下一页阅读记录

《自然》啊~

世界上最早的科学期刊之一,也是全世界最权威及最有名望的学术期刊之一。

首版於1869年11月4日,到现在(2015年)传承都快一百五十年了~

而且在今天大多数科学期刊都专一于一个特殊的领域不同,《自然》是少数(其它类似期刊有《科学》和《美国国家科学院院刊》)依然发表来自很多科学领域的一手研究论文的期刊。

在许多科学研究领域中,每年最重要、最前沿的研究结果是在《自然》中以短文章的形式发表的。

尽管影响因子的评价不完全客观,但40+的影响因子可见一斑其影响力了~

尽管脑海中想了很多,但章杉还是不能完全理解在这上面发文的概念~

就在章杉无比膨胀的时候,系统泼冷水了:

“宿主在投稿0级论文的时候拥有100%的通过率,宿主在投稿1级论文的时候目前通过率为99%~”

“宿主投稿论文等级为n级别时,通过率相较0级每提高n级,将下降n2%的通过率~”

章杉:。。。

得,白激动半天~

按照系统这个说法,将来投稿9级论文的时候只有19%的通过率了。

不过话说回来,目前系统里面1级论文就是发在NATURE的节奏了。

9级论文将来发在哪里?

现在说来,投稿nature的话自然不是100%的过通过率了。

而是99%的过稿率~

虽然这听起来很靠谱~

但章杉是一贯脸黑,99.99中奖率都有翻车的时候~

现在具体会是什么结果,哪里又能说得好呢~

对于投稿nature的那篇,章杉全然没兴趣了,反而是对那两个0级论文章杉兴趣更浓一些~

虽然这两篇论文依旧是人类佼佼者才能企及的高度。

但以章杉的智慧他很快就搞清楚论文《FurtherapplicationoftheGenerativeAdversarialNetworks》交代的来龙去脉:

深度学习训练一个模型需要很多的人工标注的数据。

在图象识别里面,经常可能需要上百万的人工标注的数据,在语音识别里面,可能需要成千上万小时的人工标注的数据,机器翻译更是需要数千万的双语句对做训练,这些都是大数据的体现。

但是,很多时候找专家来标注数据是非常昂贵的,并且对一些应用而言,很难找到大规模的标注的数据,例如一些疑难杂症,或者是一些比较稀有的应用场景。

而标注数据的代价是极高的。

比如说对机器翻译而言,现在如果请人工来翻译,一个单词的费用差不多是5—10美分之间,一个句子平均长度差不多是30个单词,如果章杉需要标注一千万个双语句对,也就是章杉需要找专家翻译一千万句话,这个标注的费用差不多是2200万美元。

数据标注的费用是非常非常高的,让一个创业公司或者一些刚刚涉足人工智能的公司拿这么大一笔资金来标注数据是很难或者是不太可行的。

因此当前深度学习的一个前沿就是如何从无标注的数据里面进行学习。

而章杉这篇文章里描述的生成式对抗网络就是起到这样的作用。

生成式对抗网络的主要目的是学到一个生成模型,这样生成式对抗网络可以生成很多图像,这种图像看起来就像真实的自然图像一样。

生成式对抗网络解决这个问题的思路跟以前的方法不太一样,生成式对抗网络是同时学习两个神经网络:一个神经网络生成图像,另外一个神经网络给图像进行分类,区分真实的图像和生成的图像。

在生成式对抗网络里面,第一个神经网络也就是生成式神经网络,生成式对抗网络的目的是希望生成的图像非常像自然界的真实图像,这样的话,那后面的第二个网络,也就是那个分类器没办法区分真实世界的图像和生成的图像;而第二个神经网络,也就是分类器,生成式对抗网络的目的是希望能够正确的把生成的图像也就是假的图像和真实的自然界图像能够区分开。

这两个神经网络的目的其实是不一样的,他们一起进行训练,就可以得到一个很好的生成式神经网络。

生成式对抗网络最初提出的时候,主要是对于图像的生成。

章杉论文里提出来的显然是将该方法应用到各个不同的问题上。

不过论文的着重点还是章杉针对如何从无标注的数据进行学习!

在文中他提出了一个新思路,叫做对偶学习。

对偶学习的思路和前面生成式对抗学习会非常不一样。

章杉发现很多人工智能的任务在结构上有对偶属性。

在机器翻译里面,章杉把中文翻译成英文,这是一个任务,但是章杉同样也需要把英文翻译成中文,这是一个对偶的任务。

这章没有结束,请点击下一页继续阅读!

喜欢读书成神豪请大家收藏:(m.2yq.org)读书成神豪爱言情更新速度全网最快。

上一章目 录下一页存书签
站内强推女配修仙:干掉原书大女主 全球冰封:我打造了末日安全屋 美利坚财富之路 全球转生:从无限复活开始成神 仙人只想躺着 开局出生在庆余年 我,大明皇子,拉上皇帝一起造反! 嫁死人?她随军一夜怀双宝了 学霸的黑科技系统 影视从四合院阎解成开始 开局获得满级速度,杀穿五大联赛 大秦:暴君胡亥,杀出万世帝国 盛唐华章 四合院:傻柱重生之这饭盒不能给 万倍赠礼返还:我,万界第一舔! 开局获得满级力量,力压C罗梅西 天官赐福 开局逃荒带八娃 晴时踏雪覆白桥 漫威:财阀大少,管家是蒂法 
经典收藏我在非洲当酋长 全球轮回:没有人比我更懂剧情 重生1980:开局迎娶姐姐闺蜜 全球兵符:从传国玉玺开始无敌 重生1984:从开发汉卡开始 悟性逆天:八年获得66个博士 黑科技直播间 重生2003:智霸科技界 火影之活久见 四合院之民警居然会查克拉 滚远点吧校花,重生我只想搞钱! 重生60年代,开局就上山下乡 天空农场,你管这叫种田? 重生80靠赶山狩猎实现财富自由 俗人回档 美食:随机摆摊,顾客追我十条街 四合院之我也来凑热闹 诗酒双绝:一剑开天,校花崩坏了 四合院之李安的精彩人生 乡野小神医:村花秘密曝光了! 
最近更新食百获一:我的僵尸技能太bug了 出狱你退婚,我一针百亿,你哭啥? 我和漂亮阿姨的荒岛生活 1969:拒绝喜当爹,退婚知青成首富 上学工作和恋爱 害我家破人亡?我出狱带七位嫂子杀疯了 漫威:黑寡妇醉酒后,我跟她谈心 港片:我真南哥,开局捡了小结巴 都市天医望气术天下无双 让我顶罪,满级出狱你们下跪干什么 满级仙帝,带着修为回来了 重生八零:我的毛熊媳妇超会撩 校花分手?我反手混沌体镇压星空 1976逆袭者联盟 快乐斋诗词鉴赏 我的夜店老板娘 美联储,不,我只是美金的搬运工 刚上高三,系统说校花暗恋我30年? 你好,我真是精神病 重生七零年代,我让知青老婆多生娃 
读书成神豪 从前有只坏猪 - 读书成神豪txt下载 - 读书成神豪最新章节 - 读书成神豪全文阅读 - 好看的都市小说